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The idea of using a non-l inear filtering algorithm to eliminate nume- 
rically generated oscillations is investigated. A detailed study is 
conducted to fo l low the development of numerical oscillations and 
their interaction wi th the filter. A relaxation procedure is also proposed 
to enhance the effectiveness of the filter. Three model problems, a 2D 
steady state scalar convection-dif fusion equation, a 1 D unsteady gas 
dynamics f low with shock and a 1 D linear wave equation, have been 
designed to test the performance of the filtering algorithm. The effec- 
tiveness of the filter is assessed for convection schemes of different 
dispersive and diffusive characteristics, demonstrating that it is effective 
in eliminating oscillations with short wavelength, but oscillations 
of longer wavelengths are virtually unaffected. It is concluded that 
a proper combination of non-l inear filter and dispersive numerical 
scheme is a viable alternative to dissipative schemes in resolving f lows 
with sharp gradients and discontinuities. © 1992 Academic Press, Inc. 

1. I N T R O D U C T I O N  

The accurate representation of sharp gradients caused by 
phenomena such as shock waves, contact discontinuities, 
and internal/boundary layers has long been a challenge 
for the computational fluid dynamicist [1, 2]. It is well 
known that conventional numerical techniques often create 
spurious oscillations in these regions which can render the 
solution physically meaningless. Various remedies have 
been proposed. For example, Gresho and Lee [3] argued 
that the appearance of these unwanted oscillations can 
serve, at the most basic level, to indicate the regions that 
need finer grid spacings to improve the solution quality. 
Furthermore, based on this information one can improve 
the solution using various adaptive grid techniques, 
including grid redistribution I-4-6] as well as local refine- 
ment [7-9]. Spurious oscillations can also be controlled 
either by using schemes that are intrinsically dissipative, 
such as the first-order upwind scheme, or by explicitly 
adding artificial viscosity to the governing equations to 
damp out numerical oscillations [ 1, 2]. Such methods tend 
to smear gradients and cannot adequately rePresent the 
complicated flow field unless fine grid spacing is used to 
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resolve the characteristics of flow in these regions. In order 
to more accurately control the amount of numerical dissipa- 
tion, various TVD type schemes have been developed to 
capture sharp gradients without oscillations [23. 

From a different perspective, one may also choose to 
extract the "useful," i.e., physically realizable information 
from oscillatory solutions obtained using unsatisfactory 
numerical schemes that are excessively dispersive. The idea 
is to eliminate undesirable portions of the solution while 
retaining only the desired; i.e., physically realizable ones. 
To this end, Engquist et aL [103 have recently devised a 
nonlinear filtering algorithm designed to work as a post- 
processor in conjunction with standard numerical schemes. 
In our view, the idea of using the filter to suppress numerical 
oscillations has an important implication. The main reason 
that prevents many high order schemes from being useful 
for the simulation of the convection-dominated flow 
problems is the appearance of non-physical oscillations. If a 
remedy can be developed to eliminate these oscillations, 
new ground can be broken in enhancing our capability of 
resolving large gradients in the flow field. 

The present study attempts to analyze some of the basic 
features of numerical oscillations and to examine the role a 
non-linear filter can play in improving the overall numerical 
accuracy. Since, depending on the type of numerical scheme 
used, the numerical solutions may contain oscillations of 
different wavelengths, effects of the filter on oscillations of 
different wavelengths need to be delineated. This aspect will 
first be investigated. Furthermore, a relaxation procedure is 
proposed that can extend the effectiveness of the filtering 
algorithm originally proposed in Ref. [ 10]. 

In order to study the performance of the filter with 
respect to different sources of oscillations, several problems 
have been devised, including steady state and time-dependent 
flows, as well as single scalar and a system of simultaneous 
nonlinear equations. First, a scalar convection-diffusion 
problem of boundary layer type is solved. We choose three 
frequently used convection schemes for flows of the elliptic 
type, viz. second-order central differencing, second-order 
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upwind differencing [ 11 ] and a quadratic upwind differenc- 
ing method called QUICK [-12] to assess the impact of the 
filter on their performance. Next, the one-dimensional 
Navier-Stokes equations for flows with shock are solved. 
The onset and development of the spurious oscillations is 
followed. The interaction between numerical instability and 
non-linear filtering for both problems is interpreted in the 
context of wavelength selection. Based on these observations, 
a relaxation procedure is developed. It is tested by studying 
several popular methods [13], such as MacCormack, 
L a x  Wendroff, Beam-Warming in the case of a 1D linear 
wave equation. 

2. FILTERING ALGORITHM 

(I) Basics 

As pointed out in Ref. [10], for a filter to be effective it 
should have minimal effect on an already smooth solution 
and should enforce some criterion to guarantee no spurious 
oscillations near discontinuities. Furthermore, it should 
achieve the above objectives with minimal computing 
expense. We have chosen the most rudimentary filter algo- 
rithm from Ref. [-10]. More sophisticated algorithms have 
also been proposed, but they appear to be not as robust. 
Moreover, for the present purpose of understanding the 
characteristics of numerical instability and its interaction 
with the filtering scheme, the one described in the following 
serves very well. 

Let ~b s be the variable obtained after solution of the con- 
servation equations after n time steps and at grid index j. 
The filtering algorithm proceeds by first scanning the value 
~bj to correct for local maxima or minima. When a correction 
is added at a point, the algorithm ensures that the same 
correction is subtracted from a neighboring point to 
maintain conservation. The corrected neighbor is taken as 
the one with the greater difference from ~bj. Furthermore, 
correction should be made so that no value may pass its 
neighbors. Thereby, overcompensation and creation of new 
extrema is avoided. 

Specifically, let the symbols 6+ and ~ denote the 
forward and backward difference respectively, i.e., 6+ ~bj = 
~ j +  1 - -  ~ j  and 6 ~bj = ~by- ~bj ,. The filter algorithm works 
according to the following procedure: 

(i) If ((5+(~j)(6_(~j)<O, then ~bj is a local extremum, 
and it will be adjusted. 

(ii) ~bj+, or ~bj , must be adjusted by the same amount 
as ~bj is corrected; one of larger difference from ~bj will be 
chosen to be adjusted. The extent of correction applied to ~bj 
is limited to the smaller of e + and e_, where ~ + is equal to 
0.5 times the larger one between 5 + ~bj and 5 _ ~bj, and ~ _ is 
equal to the smaller of the two differences. 

It is noted that different correction schemes can be 

devised in step (ii) to adjust the solution profiles. A relaxa- 
tion procedure has been developed to modify the  original 
scheme given above. As will be demonstrated, the proposed 
relaxation procedure can further improve the' effectiveness 
of the filtering algorithm adopted here. The variables we 
feed into the filter at each time or iterative step are 
all the dependent variables to be solved. For the gas 
dynamics problem, they are density p, mass flux pu, and the 
energy term e = (p/(? - 1) + pu2/2). 

(II) Interaction of Wavelength and Filtering 

Oscillations of different wavelengths develop with time, 
depending on the particular numerical scheme employed. 
As it is designed, the filtering algorithm performs a search 
for a local extremum at each point in the domain and effects 
a correction in conjunction with an adjacent point; i.e., if a 
maximum is detected at position j, the value a t j  is decreased 
and at j + 1 or j -  1 is increased. This would indicate that 
the maximum effectiveness of the filter would apply to an 
oscillation of wavelength 2A, where A is the grid spacing. In 
the following we address the question as to how effective the 
present filtering algorithm can be when applied to the 
oscillations of longer wavelengths. 

In order to interpret and quantify the performance of the 
filter an energy content E is defined 

[j~= 2 ] 1/2 
E" = (02- ] , 

1 

(1) 

where ~b and q~s are, respectively, the numerical and exact 
solutions, and the superscript n designates the number of 
times the filtering procedure has been applied. The symbol 
J indicates the total number of grid points. 
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F I G .  1. Effect of fil tering on  osci l la t ions  wi th  2A wavelength.  Fo r  this  
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One can also define an area content A, as follows: 

J 

A"= Z ~ .  (2) 
j = l  

According to the spirit of the present filtering algorithm, one 
attempts to minimize E" while preserving A ~. In order to 
explore this issue, a series of test cases, each containing dif- 
ferent wavelengths are designed. First, Fig. 1 demonstrates 
that a single application of the filter to a 2A oscillation is suf- 
ficient to eliminate all the oscillations. As one can clearly 
observe, after one application of the filtering algorithm, A 
remains the same and E = 0, indicating that the goal has 
been achieved. If the same filter is applied to a 4A oscilla- 
tion, it requires successive applications of the filter to sup- 
press it. Figure 2 shows that the present filter proves to be 
very effective, with a geometric rate of reduction in E. In 
Fig. 2, E is normalized by the initial value, computed before 
applying the filter. Figures 1 and 2 collectively demonstrate 

that there appears to be a clear wavelength dependence in 
terms of the effectiveness of the filtering algorithm. It turns 
out that the efficacy of the filter is restricted to oscillations 
of wavelengths no longer than 4A. To demonstrate this, 
Fig. 3 shows the performance of the filter with respect to 
long wavelength oscillations. Figure 3 compares the conse- 
quences of applying the nonlinear filter to three different 
oscillations with different wavelengths as well as waveforms. 
Figure 3a shows an oscillation initially of 6A wavelength 
and a triangular shape. After first application, the short 
wavelength portion, i.e., the tip of the oscillation is 
eliminated, reducing the normalized E" to 0.633. Since a 
new plateau results from the filtering procedure, no further 
reduction of E" is possible. Similarly, for a triangular wave 
of wavelength 8A, as shown in Fig. 3b, only the short 
wavelength components can be filtered out, with E staying 
at 95 % of the initial value. Hence, the degree that the energy 
content E can be reduced decays very fast as the wavelength 
of the oscillation increases. Finally, Fig. 3c shows a sine- 
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F IG.  3. Effect of filtering on oscillations with long wavelength. For  
these cases, the filter can only eliminate the short  wavelength components:  
(a) 6A oscillation is not  fully damped by filter after first filtering. Fur ther  
application has no  effect. E = 0.633; (b) 8A oscillation is not  fully damped 
after first filtering. Fur ther  application has no effect. E =  0.9574; (c) 16A 
sine wave is only slightly altered after first filtering. Fur ther  application has 
no effect. E = 0.999. 

wave of wavelength 16A, which is almost completely 
unaffected by the filter. 

The inability of the filter to handle oscillations of long 
wavelengths may be an asset. For example, while solving an 
unsteady problem, with an appropriate numerical scheme, 
the present nonlinear filter can effectively eliminate short 
wavelength oscillations caused by the numerical procedure 
while only marginally affecting physically expected longer 
wavelength components. Hence it is not necessarily 
desirable to eliminate all the internal extrema present. 
However, in order to be able to distinguish between numeri- 
cal oscillations and physical unsteadiness, the internal 
extrema caused by the numerics and physics must be 
separable. This means that in order to apply the filtering 
technique effectively, one would actually prefer to use a 
highly dispersive scheme such as the standard second-order 
central difference scheme that creates short wavelength 
oscillations. This is indeed the case as will be demonstrated 
later. 

3. TEST P R O B L E M S  

In this section, test problems are used to demonstrate the 
characteristics of the numerical oscillations caused by 
various numerical schemes, and their interaction with the 
filtering technique. Three different problems with different 
solution characteristics have been chosen which include a 
single scalar 2D convection-diffusion equation for flow with 
a boundary layer, a complete set of 1D NaviePStokes equa- 
tions for flow with shock, and a 1D linear wave equation. 
For each case, unless otherwise noted, the filtering step is 
applied at the end of each time or iteration step. For the 2D 
case, the filtering step is applied along both directions in a 
sequential manner; the choice of sequence is inconsequen- 
tial. As will be discussed later, it is important to apply 
the filter this way, for, otherwise, the wavelengths of the 
error can grow and the effectiveness of the filter can be 
diminished. 

(I) Two-Dimensional Flow; Scalar Equation 

The following two-dimensional convection-diffusion 
equation is considered: 

U~-x+ V - 

0~<x~<l, 0~<y~<l, (3) 

with the Dirichlet boundary conditions: 

~(0, y)= 100 

~(1, y )=0  

~(x, 0)=0 

~(x, 1)= 100. 

(4) 
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FIG. 4. Schematic of flow domain, boundary conditions, and grid 
system. 

The geometry and boundary conditions adopted in the 
present study are shown in Fig. 4. The velocity components 
u and v are positive constants, with cell Peclet numbers, 
Pe~x=uAx/v= 10. A 41 x41 uniformly distributed grid 
system is employed. Due to the upstream and downstream 
boundary values assigned, a thin-layer type of solution 
exists near the downstream boundary. Three different 
convection schemes, namely, the second-order central 
difference scheme, the second-order upwind scheme, and 
QUICK have been adopted for comparison. The viscous 
terms are discretized according to the second-order central 
difference scheme for all cases. This model problem, along 
with the basic features of the schemes considered here have 
been investigated in Ref. [ 11 ]. 

The discretized form of the numerical schemes are: 

(a) Second-order central difference scheme: 

+(1 
+(, 

+~)¢~, 1.;+(1-~)~,.;÷, 
+~) 4,..J-~]; 

Second-order upwind scheme: 

~ i  (4+~Pe)  ~ + I j + ( 2 P e +  

Pe 
2 ~i--2"J'~-q~i'j+l 

+ ( l + e e ) ~ i , j _ l - ~ - ~ i , j - 2  ; 

(b) 

l )  ~ i -  l , j  

(5) 

(6) 

(c) QUICK scheme: 

1 f Pe 
(~',J ( 4 + 9 p e ) - - 8 - ~ b ~ - 2 , J  

3 
+ (~ Pc + 1) ~bi- m,j + (1 - ~ Pe)  qti+ ld 

( 7 )  
16 qti, j_2 + P e + l  ~i,j-1 

+ ( 1 - 3 P e )  ~i,j+l]. (7) 

The point SOR iterative method with under-relaxation 
is employed to obtain the steady-state solution for each 
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FIG. 5. Comparison of solution contours of  2D convection~liffusion 
scalar equation with and without filtering, on 41 x 41 uniform grid and cell 
Peclet number  = 10. 
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scheme. A comparison of solution fields in the form of 
contour and profile plots of the three difference schemes 
with and without filters are depicted in Figs. 5 and 6, 
respectively. As already mentioned, a boundary-layer type 
solution is formed at the top right boundary. The fast varia- 
tion of the variable ~b across the boundary layer causes the 
second-order central difference scheme without filter to 
generate noticeable oscillations at the top boundary. The 
oscillations travel far into the upstream portion of the 

domain. However, with the application of the filtering 
procedure at every iteration, the oscillations completely dis- 
appear, resulting in a more accurate and physically 
realizable solution. 

It is noticeable that the filter exhibits different degrees of 
effectiveness on solution profiles at different locations. At 
y = 0.875, the solution with central difference scheme con- 
tains only the oscillations with 2A wavelength. The profile 
after filtering is of a constant value in the majority of the 
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domain and exhibits a thin layer of the thickness of A, at the 
downstream boundary. Hence, according to our discussion 
in the previous section, the present filtering procedure can 
work very well there. However, the profile plot of a central 
differencing scheme with filter along the line of y =  0.5 
shows the "plateau" feature at the tail of the boundary layer. 
At y = 0.5 the boundary layer is much thicker due to the 
cross-stream diffusion originating from the discontinuity of 
upstream boundary values. Hence, the numerical oscilla- 
tions of wave length 2A, at y =  0.5, ride on a smoothly 
varying profile whose characteristic length scale is much 
longer. Consequently, the filtering process creates several 
plateaus instead of a smooth curve for the final solution 
profile. In summary, the filter has the tendency of flattening 
extrema that are not the result of overshooting and thus 
gives a low order of accuracy locally around smooth 
extrema. This is a property shared with all TVD type 
schemes [14]. 

The second-order upwind scheme produces identical 
results with or without the filter; neither spurious oscilla- 
tions nor noticeable plateaus are observed. This indicates 
that the filter is only active in regions of oscillations and 
does not much affect smooth solutions with no short 
wavelength oscillation. The numerical solution with the 
QUICK scheme without filter also exhibits oscillations near 
the boundary-layer region. Similar to the case of a central 
difference scheme with filter, the wiggles near the boundary- 
layer region are damped out, but the plateaus are still 
present. 

From the results presented so far, several observations 
are readily made. First, the present filtering procedure is 
effective in eliminating 2A or 4A oscillations and ineffective 
for oscillations of longer wavelengths. Consequently it can 
improve the accuracy of the solutions yielded by both the 
central difference scheme and the QUICK scheme, trans- 
forming oscillations into smoother profiles with plateaus. 
With regard to the second-order upwind scheme, although 
the solution does exhibit a non-physical overshoot, because 
the overshoot is of a length scale larger than 2A, the filter 
in the present design cannot make any improvement. Con- 
sequently, without the filtering procedure the solution of the 
second-order upwind scheme is clearly better than those of 
other convection schemes. With the use of nonlinear filter, 
however, the solution of all three schemes are of comparable 
accuracy. 

(II) One-Dimensional Flow with Shock 

The problem just presented can clearly illustrate the 
salient features of the filtering algorithm. However, it is a 
linear equation containing a single scalar as a dependent 
variable. Next we investigate the performance of the filter in 
the context of a system of nonlinear equations with multiple 
dependent variables coupled together. Emphasis will be 

placed on following the onset, growth, and subsequent 
development of numerical oscillations, and their interaction 
with the filter. As will become clear later, since for this non- 
linear problem, the wavelength distribution of the oscilla- 
tions widens as the computation proceeds, the timing of 
applying a filter is important. 

A one-dimensional gas dynamics problem with a shock 
moving into quiescent gas is solved numerically. 

The governing equations for the computations, in 
dimensionless form, are: 

mass continuity, 

e, + (OU)x = 0; (8)  

momentum, 

(~)b/)t-{- (~ u2 + P)x = re~  ~x Tll  ; (9) 

energy, 

(ee), + [u(Qe + p)]x 

- R e ~  ~x ~xx +~xxUZll ; (10) 

state, 

p=eRT; (11) 

where 

[(P/Q) + - ~ ]  (12) e=l_ -i 5 
7 P 

_ 4 u ( 1 4 )  Zll  - -  5] 2 x" 

Subscript oo in the above refers to values normalized with 
respect to free stream conditions. 

The initial conditions are given as P2/P1=l.5; 
Pz/Pl = 1.22; P2 = 105 N/m2; T1 = 290 K, where subscripts 
1 and 2 correspond to conditions downstream and 
upstream of the shock, respectively. These conditions 
correspond to an upstream Mach number of 0.28. The 
values of the Prandtl number, Pr, and the ratio of the 
specific heats, 7, are respectively 0.72 and 1.4. All calcula- 
tions were made with At/zlx = 0.03, which was found to be 
within the stability limit. 

An explicit time marching procedure based on the 
forward Euler method for time stepping is adopted. The 
equations are marched in time sequentially, from con- 
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tinuity, to momentum, and then to energy equation. A 
finite-volume approach is adopted to discretize the equa- 
tions cast in the strong conservative law form. Two hundred 
uniformly distributed grid points are used. At the upstream 
boundary values of density, velocity, and pressure are 
specified, whereas, at the downstream boundary, pressure 
is specified and density and velocity are extrapolated from 
the interior points. In the above numerical scheme, the 

dependent variables contained in the convection terms are 
treated by the first-order upwind scheme. The flux and 
pressure terms have been discretized by the second-order 
central difference schemes. 

For subsonic flow behind the shock, since disturbances 
propagate along both upstream and downstream charac- 
teristics, central differencing of flux and pressure terms 
corresponds closely to the physics of the flow. On the other 
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hand, using the first-order upwind scheme for the dependent 
variable is not consistent with the physics. It is well estab- 
lished that in order to correctly apply such an upwinding 
treatment of the convection terms, a flux-splitting [15] 
procedure based on the sign of the local eigenvalues is more 
appropriate. However, this practice is not adopted here for 
two reasons. First, it is known that flux-vector splitting 
along with the first-order upwind treatment is highly dif- 

fusive and smears out sharp gradients resulting in a low 
level of accuracy. Second, for the present purpose, it is in 
fact our intention to generate spurious oscillations and then 
to investigate the effectiveness of the filtering algorithm. As 
will be demonstrated, it turns out that with the filtering 
procedure a very satisfactory solution results from an other- 
wise oscillatory one; furthermore, the final solution is more 
sharply resolved than could be obtained by the first order 
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upwind scheme with flux-vector splitting, indicating that 
indeed it may be advantageous to utilize a filtering 
algorithm. 

Two flow problems are considered with Reynolds number 
of 500 and 10 4. For Re = 104, as shown in Fig. 7, solutions 
without filtering exhibit large oscillations propagating well 
into the upstream domain. When the filter is applied, sharp 
shock profiles are recovered without any evidence of oscilla- 
tions. Figure 8 compares the solution with and without filter 
for a lower Reynolds number of 500. Without resorting to 
the filter, the solution is better behaved than for Re = 104. 
Nevertheless, inspite of a much larger viscous effect for 

R e =  500, oscillations still exist near the discontinuity. 
When the filter is applied, the oscillations disappear and 
a satisfactory solution is obtained. Figures 7 and 8 
demonstrate that the filtering technique works extremely 
well for the present problems. The resulting solutions are 
not only oscillation free, the shock is sharper than 
commonly yielded by a first-order scheme. 

In the previous section, we have discussed and 
demonstrated the wavelength selection characteristic intrin- 
sic to the present filtering algorithm. However, both Figs. 7 
and 8 show that for solutions without a filtering procedure, 
the characteristic wavelength of the oscillations are longer 
than 2A or 4A; they are around 10A in both cases. Hence the 
fact that the filtering procedure is effective clearly suggests 
that the onset of instability for the present numerical 
method must be of short wavelengths. These initial oscilla- 
tions apparently grow in time, not only in magnitude but 
also in wavelength. In order to explore this aspect of 
instability formation and growth, a detailed scrutiny of the 
evolution of solution profile with time is conducted in the 
following. 

Figure 9 shows a sequence of velocity profiles after 
selected time steps at locations upstream of the discon- 
tinuity. Up to 10 time steps, the numerical oscillations 
initially form with a 2A wavelength and grow in magnitude 
but not in wavelength. After 30 time steps, a bifurcation 
of wavelength appears and both 2A and 3A waves are 
observable. The situation remains qualitatively the same 
until after 100 time steps, when an additional wavelength of 
4A appears. This scenario of growth and bifurcation con- 
tinues until a steady profile as in Fig. 7 results. Figure 9 
shows the solution profiles for Re = 10 4 without using the 
filtering procedure at three instants, viz. after 10, 30, and 
100 time steps. Figure 10 shows the solution profiles after 
the filter has been applied only once to the corresponding 
situations in Fig. 9. In the cases of Figs. 7 and 8, the filter is 
invoked at every time step, whereas in Fig. 10 only one 
application has been made at the time step shown. 

The results displayed in Fig. 10 again confirm our 
earlier analysis regarding the wavelength dependence of the 
filtering procedure. If the filter is applied after 10 time steps, 
then since all the oscillations are of 2A wavelength, the solu- 
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tion is immediately freed of any oscillations. If it is applied 
after 30 time steps, then as shown in Fig. 10, after one 
applications of the filtering procedure, all 2zl waves dis- 
appear and only the 3zl wave remains. The 3zl wave can be 
further suppressed after successive application of the 
filtering procedure. Finally, if the filter is applied only after 
every 100 time steps, as shown in Fig. 10, then after one 
application, all 2A waves again disappear while the longer 
ones remain. As the wavelengths become longer the filter 
effectiveness diminishes. If one waits until the steady state 
form shown in Fig. 7 is reached, since the characteristic 
wavelength of the oscillations is long, the filter is found to 
contribute very little to improve the solution accuracy. 

(III) Filtering with Relaxation 

The result presented so far are all based on the procedure 
outlined in Section 20). It should be noted that the filtering 
procedure does not yield unique solutions. Different proce- 
dures can be devised that can adjust the solution profiles 
differently; these different adjustment paths can result in 
different final solutions with different degrees of dispersion 
and dissipation characteristics. 

In the course of this study, it has been found that step (ii) 
outlined in Section 2(I) can be modified by incorporating 
a relaxation procedure during the correction step; if 
the correction to be made is multiplied by a relaxation 
parameter co, usually larger than 1, then the filtered solution 
can be further improved to satisfy its physical realizability. 
Essentially, the relaxation procedure incorporates extra 
adjustments by removing the plateaus, encountered in the 
early stage of filtering procedures, while still satisfying the 
idea of area preservation. In order to investigate the effec- 
tiveness of this relaxation procedure, the 1D linear wave 
equation with a constant speed of propagation is used as the 
model problem. It is noted that all the results presented in 
Figs. 5-8 have reached such levels that the present relaxa- 
tion procedure does not alter them. However, the following 
examples show that there are many cases for which a 
relaxation procedure can further improve the quality of 
the solution. 

The test problem devised here is the simple 1D linear 
wave equation, 

~3¢ +u~_=0,,3oS t>0 ,  -oo  < x <  o% (15) 
~3t o x  

with a constant value of u, and a step function as the initial 
condition. Four common schemes are used to solve this 
problem with 101 grid points and the Courant-Friedrichs- 
Lewy (CFL) number of 0.5. The schemes tested are the 
standard Lax-Wendroff, Beam-Warming, MacCormack, 
and the combination of forward Euler (time)/second-order 
upwind (space). Detailed formulas can be readily found 
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from many standard references, e.g., [13], and will not be 
repeated here. 

Figure 11 shows the solution obtained using these 
schemes after 50 time steps with three treatments, i.e., 
without application of a filter, those with the filtering proce- 
dure a s  outlined in Section 2 (or, in the present context, 
with co = 1.0), and filtering with a relaxation parameter with 

= 1.6. As can be clearly observed, solutions without ill- 

tering are all unsatisfactory, yielding oscillations of different 
magnitude and wavelengths. In particular, the combination 
of forward Euler/second-order upwind scheme does not 
seem to be able to produce a solution of any use at all. In 
this regard, it should be noted that other time-stepping 
schemes such as the second-order Runge-Kutta method, 
when combined with the second-order upwind scheme, can 
yield solutions with greatly reduced oscillations. We decided 
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to use this particular combination to contrast the effect 
of the filtering algorithm. W i t h t h e  use of the filtering 
algorithm and co = 1.0, it is clear that all the solutions are 
improved, exhibiting attenuation of spurious oscillations. 
Nevertheless, it is also clear that the filtering algorithm 
cannot completely suppress the wiggles and the internal 
plateaus that appear within each solution. This phenom- 
enon is due to the fact that the schemes tested here all 

contain some levels of built-in dissipation, and, hence, some 
oscillations with longer wavelengths are retained at the end 
of the filtering procedure. However, if co= 1.6 is used, 
instead of 1.0, the solution can be further improved and all 
the undesirable wiggles disappear. In fact, the final solutions 
of all the schemes are of high quality, maintaining sharp 
profiles across the discontinuity with no spurious oscilla- 
tions. In particular, that resulting from the forward Euler/ 
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second-order upwind combination is of sharper gradient 
across the discontinuity than others. The results contained 
in Fig. 11 again demonstrate that when properly handled, 
the spurious components of a seemingly useless solution can 
actually yield very good quality, yielding satisfactory 
solutions from the viewpoint of physical realizability as well 
as quantitative accuracy. 

4. C O N C L U S I O N S  

The non-linear filter has proved to be very effective in 
suppressing numerically generated oscillations of 2A and 4A 
wavelengths. The fact that the filter primarily affects small 
wavelength oscillations proves to be a desirable feature. For 
any numerical simulation, grid independence studies can be 
used to delineate the spurious oscillations from the physical 
ones and a grid size chosen such that physical waves are of 
relatively longer wavelengths. With such a grid, minimal 
effect of the filter on the physical oscillations is ensured. 
Regarding the strategy of implementation, since the initially 
developed oscillations at the discontinuity are of 2A 
wavelength and the distribution of wavelength tends to 
widen with time, the filter is most effective when applied at 
each time step of the computation. 

For the elliptic flow problem, the filter can substantially 
improve the performance of both central difference and 
QUICK schemes. For the 1D flow with a shock and a 
simple wave equation, the spurious oscillations can also 
be completely suppressed, resulting in highly satisfactory 
numerical solutions, even with a very simple computational 
procedure and a first-order-accurate scheme. In this regard, 
a relaxation procedure is proposed which is shown to be 
capable of further improving the solution qualities. The 
interaction of wavelength and filtering with relaxation is 
currently under study. The results presented so far contain 
only one shock or sharp gradient region. For more com- 

plicated cases that involve the interaction of the waves 
of sharp gradients, the exact performance of the present 
filtering technique is not clear and needs to be further 
investigated. 

Conventionally, to resolve sharp gradients numerical 
dissipation is usually employed to obtain a physically 
realizable solution, while compromising on accuracy. The 
present results demonstrate that the filter, when used with a 
higher order dispersive scheme, provides an interesting 
alternative, allowing the accuracy of the dispersive scheme 
to emerge, while maintaining physical realizability. 
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